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Abstract In this paper, the linearly conforming radial point
interpolation method is extended for geometric nonlinear
analysis of plates and cylindrical shells. The Sander’s non-
linear shell theory is utilized and the arc-length technique
is implemented in conjunction with the modified Newton–
Raphson method to solve the nonlinear equilibrium equa-
tions. The radial and polynomial basis functions are
employed to construct the shape functions with Delta func-
tion property using a set of arbitrarily distributed nodes in
local support domains. Besides the conventional nodal inte-
gration, a stabilized conforming nodal integration is applied
to restore the conformability and to improve the accuracy of
solutions. Small rotations and deformations, as well as finite
strains, are assumed for the present formulation. Compari-
sons of present solutions are made with the results reported in
the literature and good agreements are obtained. The nume-
rical examples have demonstrated that the present approach,
combined with arc-length method, is quite effective in tra-
cing the load-deflection paths of snap-through and snap-back
phenomena in shell problems.
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1 Introduction

Shell structures are often found in engineering structural sys-
tems due to peculiarities of their behavior: the curvature of
shell structures can be made use to significantly increase
their load carrying capacity. The shell analysis, therefore,
is of great importance for practical engineering problems.
Commonly, the linear analysis is carried out for shells under-
taking small displacements under external loads. Nonlinear
response of shells, however, should be investigated in the
circumstance where shells experience large deformations.
Macneal and Harder [1] proposed a standard set of finite ele-
ment problems for linear analysis of shells. Belytschko et al.
[2] investigated the performance of 9-node element in dealing
with shear and membrane locking in linear shell analysis. A
geometrically exact shell model was reported by Simo et al.
[3,4] to study the linear behaviour of shells. For the nonlinear
analysis of shells, Sabir and Lock [5] investigated geometri-
cally nonlinear response of cylindrical shells under lateral
loading. Bergan and Nygard [6] presented nonlinear shell
analysis using the theory of free formulation finite elements.
Palazotto and Dennis [7] carried out the nonlinear response
of composite shells, and also examined the influence of trans-
verse shear deformation. Recently, Choi and Paik [8] deve-
loped a 4-node degenerated shell element for the analysis of
shell structures that are undergoing a large deformation. The
other works of geometric nonlinear analysis of shells include
those given by Sze and Zheng [9], Sze et al. [10], Haupt-
mann and Schweizerhof [11], Reddy [12] and Arciniega and
Reddy [13].

Meshfree methods, which are based on a set of discrete
nodes instead of meshes, have been applied in shell ana-
lysis by researchers. Krysl and Belytschko [14] presented
an element-free Galerkin shell formulation for arbitrary
Kirchhoff shells. Noguchi et al. [15] proposed an enhanced
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element-free Galerkin method to analyze three-dimensional
shell and spatial structures. Li et al. [16] carried out numeri-
cal simulations of large deformation of shell structures using
meshfree methods.

Radial point interpolation method (RPIM) reported by
Wang and Liu [17], a variant of Point interpolation method
(PIM) [18], is a meshfree method that employs both polyno-
mial and radial basis functions (RBFs) to construct the shape
functions. The RPIM shape functions possess the Kronecker
delta function property and the moment matrix is always
invertible for arbitrarily scattered nodes due to the adoption
of the radial basis function. The RPIM has been successfully
applied in many engineering problems, such as simulation
of piezoelectric structures [19], three-dimensional elasticity
problems [20], and solid mechanics problems [21].

In meshfree methods, Gaussian quadrature is commonly
used to evaluate the stiffness matrix. Due to the high com-
putation cost and complexity involved in Gauss integration,
nodal integration has been proposed by researchers as an
alternative integration approach. The numerical stability and
accuracy, however, are not ensured in nodal integration. A
variety of efforts has been taken by researchers in order to
overcome such shortcomings. Beissel and Belytschko [22]
presented a stabilized nodal integration approach for element-
free Galerkin method. The spurious near-singular modes in
some problems, according to their study, were successfully
eliminated. But for problems without unstable modes, the
accuracy of solutions deteriorated. Bonet and Kulasegaram
[23] proposed a correction procedure to improve the accuracy
of nodal integration by avoiding the computation of a second-
order derivative of shape functions. A stabilized conforming
nodal integration for the Galerkin meshfree method was pre-
sented by Chen et al. [24] to achieve higher efficiency with
desired accuracy and convergent properties. An integration
constraint (IC) was introduced as a necessary condition for
a linear exactness in the meshfree Galerkin approximation.
The Gauss integration has been demonstrated to violate IC
and produces prominent errors.

In this paper, geometric nonlinear analysis of plates and
shells is studied via a linearly conforming radial point inter-
polation method (LC-RPIM). The nonlinear shell theory
employed in present formulation only takes into account
the nonlinear membrane strain, while the bending and shear
parts are still linear. Furthermore, it is should be noted that
small rotations and deformations, as well as finite strains,
are assumed for the present formulation. The conventional
nodal integration is used to evaluate the membrane and shear
stiffness terms, while a stabilized nodal integration technique
is employed to estimate the bending stiffness term in order
to achieve conformity, higher accuracy and efficiency. The
load-deflection responses for present cases are determined
by using arc-length approach [25]. The numerical examples
show that present method not only avoids membrane and

shear locking, but also provides good accuracy, efficiency
and stability in capturing the snap-through and snap-back
phenomena in shell problems.

2 Radial point interpolation method

In this section, a brief introduction of the construction of
RPIM shape functions is given. Consider an approximation
of function u(x) in a support domain with a set of arbitra-
rily scattered points at xi , (i = 1, 2, . . . , n), where n is the
number of nodes in the support domain. The approximation
function u(x) can be expressed in the form of

u(x) =
n∑

i=1

ri (x)ai +
m∑

j=1

p j (x)b j = rT(x)a + pT(x)b (1)

where ai is the unknown coefficient for the radial basis func-
tion ri (x), which is defined as

ri (x, y) =
[
(x − xi )

2 + (y − yi )
2 + R2

c

]q
(2)

where q and Rc are two optimal shape parameters, which
had been generalized as an arbitrary real number and exa-
mined in detail by Wang and Liu [17]. b j is the coefficient
for polynomial basis p j (x), and m is determined according
to the polynomial basis selected. For example, a quadratic
basis in two-dimension requires m = 6, which is chosen in
this study. The polynomial basis is given by

pT(x) =
[
1, x, y, x2, xy, y2

]
(3)

The coefficients ai and b j in Eq. (1) are determined by
satisfying the reproducing condition at the nodes in the sup-
port domain. The interpolation at the kth node is expressed
as

uk = u(xk) =
n∑

i=1

airi (xk)+
m∑

j=1

b j p j (xk),

k = 1, 2, . . . , n (4)

In order to solve coefficients ai and b j uniquely, the fol-
lowing constraints need to be imposed

n∑

i=1

p j (xk)ai = 0, j = 1, 2, . . . ,m (5)

Equation (5) can be expressed in matrix form as

G
{

a
b

}
=
{

ue

0

}
(6)

where matrix G and nodal displacement vector ue are given
respectively as

G =
[

R0 P0

PT
0 0

]
, ue = [u1, u2, u3, . . . , un]T (7)
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The moment matrix R0 is defined as

R0 =

⎡

⎢⎢⎢⎣

r1(x1, y1) r2(x1, y1) · · · rn(x1, y1)

r1(x2, y2) r2(x2, y2) · · · rn(x2, y2)
...

...
...

...

r1(xn, yn) r2(xn, yn) · · · rn(xn, yn)

⎤

⎥⎥⎥⎦ (8)

and P0 is expressed as

P0 =

⎡

⎢⎢⎢⎣

p1(x1, y1) p2(x1, y1) · · · pm(x1, y1)

p1(x2, y2) p2(x2, y2) · · · pm(x2, y2)
...

...
...

...

p1(xn, yn) p2(xn, yn) · · · pm(xn, yn)

⎤

⎥⎥⎥⎦ (9)

Solving Eq. (6) yields
{

a
b

}
= G−1

{
ue

0

}
. (10)

The approximation of function u(x) is finally expressed
as

u(x) =
[
RT

0 (x) PT
0 (x)

]
G−1

{
ue

0

}
= ϕ(x)ue (11)

where ϕ(x) is the matrix of the shape functions and is given
by

ϕ(x) = [φ1(x) φ2(x) · · · φn(x)
]

φk(x) =
n∑

i=1

ri (x)Ḡi,k +
m∑

j=1

p j (x)Ḡn+ j,k (12)

where Ḡi,k is the element of matrix G−1.
It should be noticed that the present shape functions pos-

sess the reproducing properties due to the addition of poly-
nomial basis, satisfy the Delta function properties and unity
partition property, and always exist because of the adop-
tion of RBFs. Therefore, the completeness and reproducing
conditions are satisfied, the convergence of present method is
ensured.

3 Strain smoothing technique

It has been demonstrated by Chen et al. [24] that, to ensure
linear exactness in Galerkin approximation, integration
constraints (IC) need to be satisfied in domain integration.
In order to remove the instability in direct nodal integra-
tion, a stabilized conforming nodal integration that meets
integration constraints is introduced [24]. Recently, Sze
et al. [26] discussed, from a domain decomposition point
of view, how stabilized conforming nodal integration gua-
rantees linear exactness and eradicates spurious oscillation
in direct nodal integration. They also demonstrated that stabi-
lized conforming nodal integration can be formulated by the

Hellinger–Reissner Principle and thus justified in the classi-
cal variational sense.

The stabilized conforming nodal integration is based on a
stain smoothing technique. Consider a domain� discretized
by a set of nodes,�L denotes the representative domain of a
node xL . The strain smoothing at the node xL is defined as

ε̃i j (xL) =
∫

�

εi j (x)�(x; x − xL)d� (13)

where εi j is the strain and � is a smoothing function.
A constant smoothing function is given by

�(x; x − xL) =
{

1
/

AL x ∈ �L

0 x /∈ �L
(14)

in which AL = ∫
�L

d� is the area of the representative
domain of node L , which is generated either from the Voronoi
diagram or Delaunay triangulation shown in Fig. 1. Applying
the divergence theorem to Eq. (13) yields the following strain
smoothing expression

ε̃i j (xL) = 1

2AL

∫

�L

(uh
i n j + uh

j ni )d� (15)

where �L is the boundary of the representative domain of
node L and n is the outward normal of boundary�L as shown
in Fig. 2. For a two-dimensional problem, introducing RPIM
shape functions into Eq. (15) yields

ε̃h(xL) =
∑

I∈SL

B̃I (xL)uI (16)

B̃I (xL) =
⎡

⎣
b̃I 1(xL) 0

0 b̃I 2(xL)

b̃I 2(xL) b̃I 1(xL)

⎤

⎦ (17)

b̃I i (xL) = 1

AL

∫

�L

φI (xL)ni (xL)d� (i = 1, 2) (18)

where SL is a group of nodes whose shape function supports
cover node L . It has been demonstrated [24] that the smoo-
thing gradient Eq. (17) satisfies the integration constraints in
nodal integration.

4 Formulation

4.1 Energy functional

A cylindrical shell panel is shown in Fig. 3, where a coor-
dinate system (x, y, z) is fixed on the middle surface of the
panel. This panel is of a length L , radius R, span angle θ0, and
thickness h. According to the first order shear deformation
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(a)

(b)

Fig. 1 Problem domain represented by irregular nodes. a Voronoi
diagram. b Nodal domain by Delaunay triangulation

shell theory, the displacement field is expressed as

u(x, y, z) = u0(x, y)+ zψx (x, y)

v(x, y, z) = v0(x, y)+ zψy(x, y) (19)

w(x, y, z) = w0(x, y)

where u0, v0 and w0 denote the displacements of the mid-
surface of the shell in the x, y, and z directions,ψx andψy are
the rotations of the transverse normal about the y and x axes,
respectively.

n

LΓ
L

ΩL

Fig. 2 A nodal representative domain

x
y

z

L

R

0θ

h

Fig. 3 Geometry of a cylindrical shell panel

A modified nonlinear strain-displacement equations [12]
of the Sanders nonlinear shell theory [27] is expressed as

⎧
⎨

⎩

εxx

εyy

γxy

⎫
⎬

⎭ = ε0 + zκ,

{
γyz

γxz

}
= γ 0 (20)

where

ε0 = ε0L + ε0N (21)

ε0L =

⎧
⎪⎨

⎪⎩

∂u0
∂x
∂v0
∂y

∂u0
∂y + ∂v0

∂x

⎫
⎪⎬

⎪⎭
, ε0N =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

(
∂w0
∂x

)2

1
2

(
∂w0
∂y

)2

∂w0
∂x

∂w0
∂y

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

κ =

⎧
⎪⎨

⎪⎩

∂ψx
∂x
∂ψy
∂y

∂ψx
∂y + ∂ψy

∂x

⎫
⎪⎬

⎪⎭
, γ 0 =

{
ψy + ∂w0

∂y − v0
R

ψx + ∂w0
∂x

}
(22)
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The stress resultants are given by
⎧
⎨

⎩

N̄
M̄
Q̄

⎫
⎬

⎭ =
⎡

⎣
Ā B̄ 0
B̄ D̄ 0
0 0 Ās

⎤

⎦

⎧
⎨

⎩

ε0

κ

γ 0

⎫
⎬

⎭ (23)

where N̄, M̄ and Q̄ denote in-plane force resultants, moment
resultants and the shear force resultants respectively, and are
expressed as

N̄ =
⎧
⎨

⎩

Nxx

Nyy

Nxy

⎫
⎬

⎭ , M̄ =
⎧
⎨

⎩

Mxx

Myy

Mxy

⎫
⎬

⎭ , Q̄ =
{

Qy

Qx

}
(24)

Ā, D̄, B̄ and Ās represent matrices of extensional stiff-
nesses, bending stiffnesses, bending-extensional coupling
stiffnesses and transverse shear stiffnesses, and are defined
as

Ā =
⎡

⎣
A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤

⎦ , B̄ =
⎡

⎣
B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤

⎦ ,

D̄ =
⎡

⎣
D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤

⎦ , Ās =
[

A44 A45

A45 A55

]

(Ai j , Bi j , Di j ) =
h/2∫

−h/2

Qi j (1, z, z2)dz,

Asi j =
h/2∫

−h/2

K Qi j dz (25)

The stiffnesses Ai j , Bi j , and Di j are defined for i, j =
1, 2, 6, respectively, whereas Asi j is defined for i, j = 4, 5.
K denotes the transverse shear correction coefficient and
K = 5

/
6 is taken in this study. Qi j stands for the engi-

neering constant, which is defined as

Q11 = E11

1 − ν12ν21
, Q12 = ν12 E22

1 − ν12ν21
,

Q22 = E22

1 − ν12ν21
(26)

Q66 = G12, Q44 = G23, Q55 = G13

where E11 and E22 are the elastic moduli in the principle
material coordinates; G12,G13, and G23 are the shear moduli;
and ν12 and ν21 are the Poisson’s ratios. For a shell composed
of different layers of materials, the corresponding stiffnesses
in Eq. (25) can be obtained according to transformation law
[12].

The strain energy of the panel is expressed by

Uε = 1

2

∫

�

εTSεd� (27)

where ε and S are given by

ε =
⎧
⎨

⎩

ε0

κ

γ 0

⎫
⎬

⎭ (28)

S =
⎡

⎣
Ā B̄ 0
B̄ D̄ 0
0 0 Ās

⎤

⎦ =
[

D̂ 0
0 Ās

]
(29)

The external work done due to surface traction and body
force is given by

We =
∫

�

uT f̄d�+
∫

�

uT t̄d� (30)

where f̄ and t̄ represent the external load and prescribed trac-
tion on the natural boundary, respectively.

The total potential energy functional for the panel is
expressed as

�s = Uε − We (31)

4.2 Nodal integration

The discrete nodes are generated freely on the x − y space in
the parametric coordinate system. The nodal representative
domains based on Delaunay triangulation are obtained on
the x − y space. For a shell panel domain � discretized by
a set of nodes xI , I = 1, . . . , N P , the approximations of
displacements and rotations of the mid-plane of the panel
are expressed using RPIM shape functions as

uh
0 =

⎛

⎜⎜⎜⎜⎝

uh
0
vh

0
wh

0
ψh

x
ψh

y

⎞

⎟⎟⎟⎟⎠
=

NP∑

I=1

φI

⎛

⎜⎜⎜⎜⎝

uI

vI

wI

ψx I

ψy I

⎞

⎟⎟⎟⎟⎠
=

NP∑

I=1

φI (x)uI (32)

Substituting Eq. (32) into Eq. (31) and taking variation to
the energy functional yield the equilibrium equation

Ks(u)u = F (33)

where the secant stiffness matrix Ks is defined as

Ks(u) = KL + KNL(u) (34)

in which KL represents the linear stiffness matrix and KNL

denotes the nonlinear stiffness matrix, which is a function of
displacements.

The matrices KL ,KNL , u and F are given by

KL = Kb + Km + Ksh (35)

u = [u1 u2 · · · un
]T

(36)
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where

Kb
I J =

∫

�

BbT

I D̄Bb
J d� (37)

Km
I J =

∫

�

BmT

I ĀBm
J d�+

∫

�

BmT

I B̄Bb
J d�

+
∫

�

BbT

I B̄Bm
J d� (38)

KNL
I J =

∫

�

(
1

2
BLT

I SBNL
J +BNLT

I SBL
J+

1

2
BNLT

I SBNL
J

)
d�

(39)

Ksh
I J =

∫

�

BsT

I ĀsBs
J d� (40)

FI =
∫

�

φI f̄d�+
∫

�

φI t̄d� (41)

BL
I =

⎡

⎣
Bm

I
Bb

I
Bs

I

⎤

⎦ , BNL
I = HG (42)

The stiffness matrix in Eq. (37) is evaluated using the
stabilized nodal integration technique introduced in Sect. 3,
while Eqs. (38) to (41) are computed by the direct nodal
integration. The approximations of Eqs. (37) to (41) are given
as follows

Kb
I J =

NP∑

L=1

B̃bT

I (xL)D̄B̃b
J (xL)AL ,

Ksh
I J =

NP∑

L=1

BsT

I (xL)ĀsBs
J (xL)AL (43)

Km
I J =

NP∑

L=1

[
BmT

I (xL)ĀBm
J (xL)+ BmT

I (xL)B̄Bb
J (xL)

+BbT

I (xL)B̄Bm
J (xL)

]
AL (44)

KNL
I J =

NP∑

L=1

[
1

2
BLT

I (xL)SBL
J (xL)+ BNLT

I (xL)SBL
J (xL)

+1

2
BNLT

I (xL)SBNL
J (xL)

]
AL (45)

FI =
NP∑

L=1

φI (xL)f(xL)AL +
NPb∑

L=1

φI (xL)t̄(xL)sL (46)

where xL and AL are node coordinate and the nodal repre-
sentative area, respectively, NPb is the number of nodes on
the natural boundary, and sL are the weights associated with
the boundary point obtained from Delaunay triangulation.

B̃b
I (xL),Bb

I (xL),Bm
I (xL),Bs

I (xL), H̄ and Ḡ are given by

B̃b
I (xL) =

⎡

⎣
0 0 0 b̃I x (xL) 0
0 0 0 0 b̃I y(xL)

0 0 0 b̃I y(xL) b̃I x (xL)

⎤

⎦ (47)

Bb
I (xL) =

⎡

⎢⎣
0 0 0 ∂φI (xL )

∂x 0
0 0 0 0 ∂φI (xL )

∂y

0 0 0 ∂φI (xL )
∂y

∂φI (xL )
∂x

⎤

⎥⎦ (48)

b̃I x (xL) = 1

AL

∫

�L

φI (x)nx (x)d�,

b̃I y(xL) = 1

AL

∫

�L

φI (x)ny(x)d� (49)

Bm
I (xL) =

⎡

⎢⎣

∂φI (xL )
∂x 0 0 0 0

∂φI (xL )
∂y

φI (xL )
R 0 0

∂φI (xL )
∂y

∂φI (xL )
∂x 0 0 0

⎤

⎥⎦ (50)

Bs
I (xL) =

[
0 0 ∂φI (xL )

∂x φI (xL) 0
0 −φI (xL )

R
∂φI (xL )
∂y 0 φI (xL)

]

(51)

H̄ =
[
∂w
∂x 0 ∂w

∂y 0 0 0 0 0

0 ∂w
∂y

∂w
∂x 0 0 0 0 0

]T

(52)

Ḡ =
[

0 0 ∂φI (xL )
∂x 0 0

0 0 ∂φI (xL )
∂y 0 0

]
(53)

In order to solve the nonlinear equation system Eq. (33),
an iterative algorithm, either Newton–Raphson method or
modified Newton–Raphson method, is typically used. An
incremental form of Eq. (33), required by the Newton-type
methods, should be provided. Equation (33) is rearranged as

g(u) = Ks(u)u − F = 0 (54)

The external load is assumed to be proportional to a fixed
load F0 as

F = λF0 (55)

where λ is a load level scaling factor. The nonlinear equili-
brium equation (54) is rewritten as

g(u, λ) = Ks(u)u − λF0 (56)

For a new equilibrium state, the following conditions
should be hold

g(u +�u, λ+�λ) = 0 (57)

In which �u represents the increment displacement, and
�λ denotes the increment load factor. Applying Taylor series
expansion to Eq. (57) yields the following incremental form
of the equation

Kt�u = �λF0 − g(u, λ) (58)
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where Kt is tangent stiffness matrix and expressed as

Kt = KL + KN + KG (59)

in which KL is the linear stiffness matrix given in Eq. (35),
KN represents the nonlinear stiffness matrix related to dis-
placements and is given by

KN
I J =

∫

�

(
BLT

I SBNL
J + BNLT

I SBL
J + BNLT

I SBNL
J

)
d�

(60)

KG denotes the geometric stiffness matrix and is described
as

KG
I J =

∫

�

ḠT
I N̂ḠJ d� (61)

where Ḡ is given in Eq. (53) and stress matrix N̂ is defined
as

N̂ =
[

Nxx Nxy

Nxy Nyy

]
(62)

In the incremental-iterative method, each load step
includes the application of external load and subsequent ite-
rations to restore equilibrium. In this paper, the subscript i
is used to denote the load step number, and superscript j is
chosen to represent the iteration cycle.Iterative cycles start
at j = 1, which corresponds to the external load increment
of every load step i . The equilibrium iteration commences at
j = 2. The generalized equation for the incremental-iterative
process is given by

[Kt ]i �u j
i = �λ

j
i F0 − g j−1

i

= �λ
j
i F0 −

[
Ks(u

j−1
i )ui − λ

j−1
i F0

]
(63)

The displacement increment�u j
i is written as the combi-

nation of two parts, one is from external load increment and
the other stems from the residual force,

�u j
i = [(Kt )i

]−1
{
�λ

j
i F0 −

[
Ks(u

j−1
i )ui − λ

j−1
i F0

]}

= �λ
j
i

[
u f
]

i + [�uR] j
i (64)

In this paper, the tangent stiffness matrix is only com-
puted at the beginning of each load step and is then held
constant throughout the iterative cycles. The arc-length ite-
rative strategy is utilized to determine the load increment.
The convergence criterion is given by

‖g(u, λ)‖
‖F(u, λ)‖ < ζ (65)

The tolerance for convergence constant ζ is set to 0.001
in this study.

5 Numerical examples

In this section, numerical examples for nonlinear analysis
of plates and shells are presented to demonstrate the perfor-
mance of the present method. The displacement shape func-
tions are constructed using radial point interpolation method.
The shape parameters q and Rc are taken as 1.03 and 1.42,
respectively [17]. The scaling factor of support domain of 3.4
is used. The shear correction coefficient K = 5

/
6 is adop-

ted. The convergence tolerance ζ = 0.1% is set. The nodes
are regularly distributed, and the nodal integration domain is
generated via Delaunay triangulation. Trapezoidal rule with
two-point on each segment for integration is utilized. The
smoothing technique is applied in evaluating the bending
stiffness, while the membrane and shear terms are estima-
ted by direct nodal integration method. The nonlinear equi-
librium equation system is solved by using the arc-length
method to obtain the full load-deflection paths involving limit
points with both snap-through and snap-back phenomena.

5.1 Convergence studies

Convergence studies are performed based on the nodal dis-
tributions of a simply supported plate (a

/
h = 10) and a

clamped plate (a
/

h = 100), which are subjected to trans-
verse uniform load, as shown in Fig. 4. The Poisson ratio of
the plates is ν = 0.3. Table 1 shows the variation of nondi-
mentional center deflection w̃ = w0 Eh3

/
q0a4 with nodal

distributions. It is seen that a relatively stable convergent
trend is observed for both the simply supported and clamped
plates.

a

b

y

x

h
q0

Fig. 4 A square plate subjected to uniform transverse load
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Table 1 Transverse center displacement w̃ = wEh3/q0a4 of a square
plate (a = b = 10 in., ν = 0.3)

Simply supported (a/h = 10) Clamped (a/h = 100)

Nodes w̃ Nodes w̃

5×5 0.04759 7×7 0.01429

7×7 0.04674 9×9 0.01422

9×9 0.04653 11×11 0.01423

11×11 0.04650 13×13 0.01405

15×15 0.01404
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Fig. 5 Shear locking test for a simply supported square plate (ν = 0.3)
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Fig. 6 Shear locking test for a clamped square plate (ν = 0.3)

Figure 5 shows the locking test results for a simply suppor-
ted square plate under uniform load. The deflection is norma-
lized as w∗ = wEh3

/
12(1 − ν2)qa4. It is clearly seen that,

as the plate becomes thinner, shear locking does not arise.
A similar trend is also observed from Fig. 6 for a clamped
square plate subjected to uniform load.

A pinched cylinder is supported at each end by rigid dia-
phragm and subjected to a pair of pinching loads P = 1,
as shown in Fig. 7. This case has been studied by many

P

P

y

Z

L

h
R

Rigid
diaphragm

Rigid
diaphragm

x

Fig. 7 Geometry of the pinched circular cylinder (L = 600 in.,
R = 300 in., h = 3 in., E = 3 × 106, ν = 0.3, P = 1)

Table 2 Transverse center displacement of a pinched cylindrical shell
(L = 600 in, R = 300 in, h = 3 in, E = 3 × 106psi, ν = 0.3)

Present w(×10−5) Flügge [28] (×10−5) Reddy [12] (×10−5)
Nodes

15 × 15 1.6784 1.8248 1.8672

17 × 17 1.7213

19 × 19 1.7991

21 × 21 1.8327

23 × 23 1.8596

25 × 25 1.8663

researchers. The geometric properties of the cylinder are
length L = 600 in, radius R = 300 in, and thickness h =
3 in. The material constants are Young’s modulus E = 3 ×
106 and Poisson ratio ν = 0.3. Due to the symmetry, an
octant of the cylinder is modeled. The analytical solution of
the deflection under the point load is 1.8248 × 10−5 in [28].
Table 2 shows the comparison of the present solution with
those given by Reddy [12] and Flügge [28]. It is observed
that the RPIM solution is closed to the FEM result [12], but
slightly larger than the analytical solution. It is also seen that
the convergence trend is monotonic.

5.2 Nonlinear analysis of plates

5.2.1 Simply supported plates

A simply supported square plate subjected to a uniformly
distributed load q0 is considered (Fig. 4). This example was
studied by Reddy [12] using finite element method. The side
length and thickness of the square are a = b = 10 in and
h = 1 in. The material properties for this isotropic plate are
E = 7.8 × 106 psi and ν = 0.3. The nondimensional deflec-
tion and load are defined as w̄ = w

/
h and q̄ = q0a4

/
Eh4,

respectively. A quarter of the plate is modeled due to
the symmetry. Two types of simply supported boundary
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Fig. 8 Nonlinear center deflection parameter versus load parame-
ter for simply supported, isotropic square plate under uniform load
(a = b = 10 in., h = 1 in., E = 7.8 × 106, ν = 0.3)

conditions are considered. The displacement boundary condi-
tions termed SS-1 and SS-2 are given by

SS-1 : At x = a
/

2 : v0 = w0 = ψy = 0
At y = b

/
2 : u0 = w0 = ψx = 0

(66)

SS-2 : u0 = v0 = w0 = 0, on all four edges (67)

The boundary conditions along the symmetry lines are
expressed by

At x = 0 : u0 = ψx = 0; At y = 0 : v0 = ψy = 0

(68)

Figure 8 shows the load-displacement curves of central
point for both cases. The solutions are obtained by using a
11×11 nodal distribution. It is observed that, for both cases,
the center displacement increases with rising load, and the
case associated with SS-2 produces lower transverse deflec-
tions than case with SS-1 due to more edge constraints in
SS-2. The present RPIM method can be seen to give very
satisfactory results in comparison to solutions reported by
Reddy [12].

5.2.2 Clamped plates

A clamped, orthotropic plate under uniformly distributed
transverse load q0 is analyzed first. The geometric proper-
ties are: a = b = 12 in and h = 0.138 in. The material
parameters are: E1 = 3 × 106 psi, E2 = 1.28 × 106 psi,
G12 = G13 = G23 = 0.37 × 106 psi, and v12 = 0.32. The
clamped boundary conditions at all edges are taken to be

u0 = v0 = w0 = ψx = ψy = 0 (69)

A quarter of the plate is modeled because of the symmetry
of the plate. A nodal distribution of 15 × 15 is used in this
case. Figure 9 depicts the load-deflection responses obtained

0
0.0

0.1

0.2

0.3

0.4

Reddy [12] 
RPIM

0q

w
0

5 10 15 20 25 30

Fig. 9 Nonlinear center deflection versus load for a clamped, ortho-
tropic square plate under uniform load (a = b = 12 in., h = 0.138 in.,
E1 = 3.0 × 106psi, E2 = 1.28 × 106psi, ν12 = 0.32,G12 = G13 =
G23 = 0.37 × 106psi)

0.0
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 Reddy [12]
 RPIM
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w
0

0.5 1.0 1.5 2.0 2.5 3.0

Fig. 10 Nonlinear center deflection versus load for a clamped, cross-
ply (0◦/90◦/90◦/0◦) square plate under uniform load (a = b = 12 in.,
h = 0.096 in., E1 = 1.8282 × 106 psi, E2 = 1.8315 × 106 psi, ν12 =
0.24, G12 = G13 = G23 = 0.3125 × 106 psi)

from RPIM and given by Reddy [12]. It is clearly seen that
excellent agreement is attained.

A laminated composite plate with lamination sequence
(0◦/90◦/90◦/0◦) is also studied. This symmetric cross-ply
plate is clamped at all edges and the geometric and material
properties are: a = b = 12 in., h = 0.096 in. (each layer
of 0.024 in. thick), E1 = 1.8282 × 106 psi, E2 = 1.8315 ×
106 psi, G12 = G13 = G23 = 0.3125 × 106 psi and v12 =
0.2395. A total of 15×15 nodes is used. Figure 10 describes
the load-deflection paths of center point of the composite
plate. It can be observed that the present results compares
well with solutions reported in the literature [12].
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Fig. 11 Isotropic clamped cylindrical shell panel under uniform radial
pressure q0
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Fig. 12 Nonlinear response of a clamped cylindrical shell panel
(L = 20 in., R = 100 in., h = 0.125 in., θ0 = 0.2 rad, E = 4.5 × 105,

ν = 0.3)

5.3 Nonlinear analysis of shells

5.3.1 A clamped cylindrical panel

The nonlinear behavior of an isotropic clamped cylindri-
cal shell panel under uniform transverse pressure, as shown
in Fig. 11, is examined. The geometry parameters of the
panel are: L = 20 in., R = 100 in., h = 0.125 in. and
θ0 = 0.2 rad. The material properties are: E = 4.5 × 105psi
and v = 0.3. The boundaries conditions are same with those
given in Eq. (68). A quarter of the panel is modeled due to
the symmetry. A regular grid nodes 15 × 15 is used. The
RPIM results for the center deflection, together with solu-
tions given by Sabir and lock [5] and Palazotto and Dennis
[7], are plotted in Fig. 12. It can be seen, that the trends
of three sets of solutions agree well for load up to 0.3 psi,
although small disparities are observed for load more than
0.3 psi. The differences could be due to errors in reading the
published graph, the difference in the shell formulations and
the solution strategy.

x
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0θ

h
Hinged

Free
P

Hinged

Fig. 13 Hinged cylindrical shell under point load
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Fig. 14 Nonlinear response of point loaded cylindrical shell panel
(L = 20 in., h = 1.0 in., R = 100 in., θ0 = 0.2 rad, E = 4.5 × 105 psi,
ν = 0.3)

5.3.2 Hinged cylindrical shell under concentrated load

The hinged cylindrical shell subjected to a concentrated
load, as shown in Fig. 13, is a typical test case for geome-
tric nonlinear response analysis of shell panels. A quarter
of the shell is modeled owing to symmetry. Panels with dif-
ferent thicknesses h = 25.4 mm (h = 1.0 in.), h = 12.7 mm
(h = 0.5 in.) and h = 6.35 mm (h = 0.25 in.) are exami-
ned in this study. The other geometry parameters and mate-
rial properties are same with those given in Sect. 5.3.1. The
boundary conditions at the hinged edges are given by

u0 = v0 = w0 = ψx = 0 (70)

For the shell with thickness h = 1.0 in., a nodal distri-
bution of 15 × 15 is adopted. Figure 14 shows the center
point load-deflection responses of RPIM solutions and results
given by Sabir and Lock [5], and Palazotto and Dennis [7].
It is seen that present PRIM solutions agree well with those
reported in literature.

Figure 15 depicts the nonlinear response of a shell panel
with thickness h = 12.7 mm. a regular node distribution of
17 × 17 is used. The results given by Sabir and Lock [5]

123



Comput Mech (2008) 42:133–144 143

0
-500

0

500

1000

1500

2000

2500

3000

3500
)

N(
P,dao

L

Central deflection, w (mm)

 Sabir & Lock [5]
 RPIM
 Sze et al. [27]

10 20 30

Fig. 15 Nonlinear response of point loaded cylindrical shell panel
(h = 12.7 mm)
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Fig. 16 Nonlinear response of point loaded cylindrical shell panel
(h = 6.35 mm)

and Sze et al. [29] are also plotted in Fig. 12 for comparison
purpose. A snap-through behavior is observed for this shell
panel. It is seen that, in general, three curves agree well,
except that the low limit point load calculated from RPIM is
slightly higher than results reported in literature.

Figure 16 shows the load-deflection curves for a shell
panel with thickness h = 6.35 mm. A total of 21 × 21 nodes
is used. A snap-back phenomenon is noticed for this shell
panel. The RPIM solutions are compared with results com-
puted by Sze et al. [29] using ABACUS and Crisfield [25]
using finite element method. It is clearly seen that the PRIM
has successfully captured the negative load limit point, and
the present results agree well with those given in literature.

Figure 17 shows the load-deflection responses of lami-
nated shell panels subjected to point load. Two lamination
sequences, [90◦/0◦/90◦] and [0◦/90◦/0◦], are considered
in this study. The shell thickness is h = 12.7 mm. The mate-
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Fig. 17 Load-deflection responses of laminated cylindrical shell
panels ([0◦/90◦/0◦], [90◦/0◦/90◦]) under point load (h = 12.7 mm,
EL = 3,300, ET = 1,100,GLT = 660, νLT = νT L = 0.25)

0
-500

0

500

1000

1500

2000

2500

3000

)
N(

P ,dao
L

Central deflection, w (mm)

 RPIM 
 Sze et al. [27]

10 20 30 40

Fig. 18 Load deflection response of hinged cylindrical shell with
lamination sequence [0◦/90◦/0◦] (h = 6.35 mm, EL = 3,300, ET =
1,100,GLT = 660, νLT = νT L = 0.25)

rial properties are: EL = 3,300, ET = 1,100, GLT = 660
and vLT = vT L = 0.25. A nodal distribution of 17 × 17
nodes is adopted. It can be concluded from the observa-
tion, that the lamination sequence has significant influence
on the nonlinear behavior of shell panels. It is noticed that the
values of loads at the lowest limits obtained from RPIM are
higher than those given in literature for both cases. Figure 18
describes the nonlinear response of a laminated shell panel
with lamination [0◦/90◦/0◦] and thickness h = 6.35 mm.
A 19 × 19 nodal distribution is used. A complicated load-
deflection relationship is observed and the present RPIM
solutions compares well with results reported in literature
[29]. It is concluded from these two examples, that both the
lamination sequence and thickness play important roles in
nonlinear responses of shells.
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6 Conclusions

In this paper, the geometric nonlinear analysis of plates and
shells are carried out by using a linearly conforming radial
point interpolation method. Both the radial and polynomial
basis functions are employed to construct the RPIM shape
functions. A strain smoothing technique was introduced for
the stabilization of nodal integration. The present formula-
tions are validated by a variety of benchmark tests. Nume-
rical examples have demonstrated that the present method
provides very stable and accurate solutions for plate and
shell analysis, and is able to capture the limit points in snap-
through and snap-back phenomena in shells.
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